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A typical integral equation, which arises when solving linear plane contact problems for semi-bounded bodies, is considered. By 
using a special representation of the kernel of this equation, an approximate method is developed for solving it that is effective 
over a wide range of variation of the dimensionless geometrical parameter occurring in the kernel. The method is tested on the 
problem of the symmetrical compression of an elastic strip along its boundaries by two similar punches. 0 2003 Elsevier Science 
Ltd. All rights reserved. 

1. THE INTEGRAL EQUATION OF PLANE CONTACT PROBLEMS 

A wide range of plane contact problems for linearly deformed semi-bounded bodies can be reduced 
to solving the following integral equation of the first kind with a difference kernel [l-3] 

1 x 1 G 1, h E (a=-) (1.1) 

K(y) = 5 L(u)cosuydu 
0 u 

where T(X) is the dimensionless contact p,ressure,f(x) is the dimensionless indentation of the punch 
and h is a dimensionless geometrical parameter. The function L(U), which occurs in the expression for 
the kernel KCy), possesses the following properties: (1) it is continuous, odd and does not vanish for 
any 0 c u < 00, (2) the following asymptotic expressions hold 

L(u) = I+ qu-*), u + m; L(u) = Au + 0(u3), u + 0, A = const (14 

The following limitation is imposed on the functionf(x): its first derivative when IX 1 G 1 must satisfy 
the Hijlder condition. 

Asymptotic “large h” (h 2 2) and “small h” (h 6 2) methods and also the method of orthogonal 
polynomials and the collocation method with respect to Chebyshev nodes, also effective only for large 
or small h, were developed previously in [l-3] for the approximate solution of integral equation (1.1). 
A method was proposed in [2, Chapter 5, Section 2, Paragraph 21 which is equally effective both of 
large h and small h, but is extremely cumbersome. Below we propose another, simpler method, equally 
effective, at least, for values of the parameter h E [6, l/3], i.e. over the whole range of variation of h 
of practical importance. 

By virtue of conditions (1.2), we can represent the function L(U) in the form 

L(u) = thAu + g(u) 

g(u) = oh-*), u 3 -; g(u) = O(uJ), u + 0 

Ig<u,lc s, 0 s u < 00 

where the value of 6 in practical problems is, as a rule, small compared with unity. 

(1.3) 
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Using representation (1.3) and the integral [4, (4.116(2))] 

- thAu 
I- 

XY 
0 u 

cosuydu=-Inthz 
I I 

we can convert integral equation (1.1) to the form 

-i p(!Jlnth~d~=rrJ(*)- i qq,!po)g 
-1 I I -1 

F(y) = 7 d”) 
7c 

-cosuydu, p = - 
0 u 2Ah 

We differentiate integral equation (1.4) with respect to x and obtain 

(1.4) 

(1.5) 

G(y) = -F'(y) = 7 g(u)sin uydu 
0 

By virtue of properties (1.3) of the function g(u) it can be shown that the function G(y) satisfies the 
Holder condition when ]y ] 4 R, R < 00. In addition, we note that the solution of the singular integral 
equation of the first kind (1.5) with the additional condition 

is equivalent to the solution of integral equation (1.4). 

2. CONVERSION OF THE INTEGRAL EQUATION AND 
THE STRUCTURE OF THE SOLUTION 

Integral equation (1.5) can be rewritten in the form 

4 
cpm 

ch #iOh ~6 - th PJ ) 
ds = nf’(x)chp - 

-I 

We now make the following replacements in integral equation (2.1) and condition (1.6) 

t = thp, z = thl&, w(r)=cp(c)chpc, h(t) =f’(x)chp 

As a result we obtain 

* w(r) I -dT = nh(t)- j v(t)H(r,t)dq 
-(I r-t 

1 r 1 s a 
-a 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

It is important to note that the root singularities in (2.3) and (2.4) lie outside the ranges of definition 
and integration, since a < 1. 

Any well-known approximate methods [ 1-3, 5-81 can be used to solve singular integral equation of 
the first kind (2.3). Since they are all based in some way on the exact inversion of the principal singular 
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operator on the left-hand side of integral equation (2.3), then, for small 6 (see (1.3)) and, as a 
consequence, small 

maxIGty)19 m=IFty)l, Osyc=~ (2.5) 

their effectiveness will be extremely high for any values of the parameter h (in practice for h E [6, t/s]). 
Taking into account the above-mentioned properties of the functions@) and G(y) it can be proved 

(21, that if a solution of Eq. (2.3) exists for a given value of h in the class of functions 

7 py(q%<=, o<p<2 (2.6) 
-a 

then, in general, this solution can be represented in the form 

w(t) = Y(r)(a2 - r*)-X (2.7) 

where the function Y(t) satisfies the Holder condition when ] t ] < a. 
Note that the function w(t) can be found from singular integral equation (2.3), apart from the following 

term 

f’Qa2 - t* )-yz P-8) 

Hence the constant C is then determined from additional condition (2.4). 
In a number of problems of the function f(x) in (1.1) can only be determined apart from the linear 

part c0 + ctx. To obtain co and cl additional conditions are needed, for which the following are usually 
used 

cp(fl)=O (2.9) 

3. THE EXACT SOLUTION ION A SPECIAL CASE 

If the function g(u) = 0 in expression (1.3) then Eq. (2.3) degenerates (H(z, t) = 0) into the classical 
singular integral equation of the first kind with a Cauchy kernel, solvable in closed form (see, for example, 
[2]). Reverting, in this solution, to the old variables and notation given by (2.2) we have 

X(x) = ch It&%$, Y(x) = (ch p)-’ dz 

where the constant C must be determined from the condition 

For conditions (2.9) we have 

q(x)= -;Y(x)j f’(5) (g 
-I Oh ~5 - th cLI.)WS> 

while conditions (2.9) themselves take the form 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Condition (3.2) also remains in force here. 
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In the special case whenf(x) 3f = const, we obtain from formulae (3.1) and (3.2) 

cpix) = Pf 
K&&X(x) ’ 

p= 2fW) ; p= i cpiws 
K(d-;?) -I 

(3.5) 

where P is the integral characteristics, defined by the last formula of (3.5) and K(a) is the complete 
elliptic integral of the first kind. In deriving formulae (3.5) we used the integral [9, (2.6.16(18))] 

4. THE APPROXIMATE SOLUTION IN THE GENERAL CASE 

For the approximate solution of integral equation (2.3) with condition (2.4), when the function g(u) in 
expression (1.3) is not identically equal to zero, it is best to use the Multopp-Kalandiya method [2, 3, 
71. We will describe in briefly here in a somewhat non-traditional form. 

We substitute expression (2.7) into relations (2.3) and (2.4) and change to the new variables 

As a result we obtain 

T = a cosw, t = a co& (4.1) 

(4.2) 

-a R(o)ln]acoso]do = Jcpf (0) - 7 R(w)M(a cos w)do (4.3) 
0 

M(T) = 7=-L ,‘,* (~-l)ln]rJ+l”(l+Jl_r2)+ ($nE)] 

where Q(8) = W(a co&), k(8) = h(a co&). 
The function Y-‘(t) we construct a Lagrange interpolation polynomial at the nodes 

r,, =aco&,, 0, =x(2n- 1)/(2N), n= 1,2 ,..., N (4.4) 

which are the zeros of the Chebyshev polynomial of the first kind r~(t/u). In special cases when Y(t) 
is an even or odd function and N = 2r + 1 (Y 2 l), these polynomials have the following form respectively 
PI 

’ n(e) = - rs C2(f3,)&, 1+ 2 i cos2mt3, cos2me 
r+M n=l ( m=l 1 

n=l,2 ,...) r+l, 

n(e) = - ,,2% gl w,) i cos(2m - i)e, cos(2m - l)e, n = 1,2, . . . . r 
n m=l 

where 6, = 1 (n #r + l), 6, = ‘/L (n f r + 1). 
Substituting the approximate expression for Q(O) in one of the forms in (4.5) into Eq. (4.2) and using 

the relation [4, (7.344(l))] 

[ cos~~~osedo=~~, o<ecx, l=O,l,... (4.6) 

we can evaluate the integral on the left-hand side of Eq. (4.2) exactly. To evaluate the integral on the 
right-hand side of the equation approximately we use the Gauss quadrature formula [3, 71 

(4.7) 
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After evaluating the integrals in (4.2) we put 13 = 8, in the relation obtained and thereby arrive at a 
system or r linear algebraic equations in the quantities 

-(-I)"H(~cos~,,-UCOS~,)]) = r+i f I (e,), s = hZ...,r \ L/ 

xj”)(0,e) = 2 i cos(2m - x)osin(2m - x)e 
m=I 

where x = 0, for the even version and x = 1 for the odd version. 
To close the system of equations (4.8) for the even version we 

(4.5) into the addition condition (4.3). Using the relation [2.8] 

(4.8) 

substitute Q(8) in the first form of 

we can accurately evaluate the integral on the left-hand side of relation (4.3). To evaluate the integral 
on the left-hand side of relation (4.3) approximately we again use the quadrature formula (4.7). We 
thereby obtain one more equation 

r+l 
C Q(e,)6, 
n=l [ 

In:+ i (-l)m “‘7 +bqacOse,) 
m=l I( ) 

= r++ pf(0) (4.9) 

which supplements system (4.8) for the even version. 
After solving system (4.8) (4.9) for the even version and system (4.8) for the odd version for Q(e), 

from formulae (4.5) we can obtain approximate expressions for the functions Q(e) and, consequently, 
also for the function Y(t) -+ w(t) + cp(~). 

We will again obtain a formula for evaluating the integral characteristic, defined by the last formula 
of (3.5). We carry out the sequence of transitions (p(c) -+ w(t) -+ Y(t) + Q(o) in the integrand in this 
formula and then substitute into it Q(e) in the form defined by the first formula of (4.5). We obtain 

P= CL(r :1 ,2) %l mw, J, + 2 i (-1)” C0S2menJ2m 
n [ m=l I 

(4.10) 

xl2 

J2m= ./ Jfido 

All the integrals I&, can be expressed in terms of complete elliptic integrals of the first kind K (a) 
and the second kind E(a). We will give the formulae for the first four integrals: 

Jo = K(u), J, = [(-2 + u2)K(a) + 2E(u)]u-* 

J, = [(16- 16u2 +3u4)K(u)+(-16+8u2)E(u)](3u4)-’ (4.11) 

J, = [(-256 + 384~~ - 158~~ + 15u6)K(u) + (256 - 256~~ + 46u4)E(u)](15u6)-’ 

5. EXAMPLE 

We will consider, as an example, the well-known problem [l] of the compression of an elastic strip 
(1x1 < 00, -h d y G h) along the boundaries by two similar punches, so that there is symmetry about 
they = 0 axis. Assuming that there are are no friction forces along the lines of contact of the punches 
with the strip, this problem can be reduced to solving integral equation (1.1) in which the function cp(x) 
represents the dimensionless contact pressure, the functionf(x) is related to the indentation of the 
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Table 1 

h qe,,)tl I?/ 
___- 

n=l 2 3 4 (4.10) A22 A s 2 (3.5) 

punches and the form of their base, the parameter h is the ratio of the thickness of the strip 2h to the 
length of the line of contact, and the function L(u) has the form 

L(u) = 
ch2lr-1 

sh2u+2u (5.1) 

For dimensionless values of the forces P, which impress the punches into the strip, we will have the last 
formula of (3.5). In the second relation of (1.2) the quantity A = ‘iz, and we then have a = th(rrlh). In 
expression (1.3) 6 = 0.08, while in (2.5) maxi G(y) 1 = 0.18 and max IF(v) 1 = 0.10. 

We will give the results of using the proposed method to solve the problem in the special case of a 
flat punch f(x) = f = const. The calculations were carried out for r = 3 for 10 values of the numbers. 

On the left-hand side of Table 1 we give values of Q(O,)/f(n = 1, 2, 3, 4) calculated for different h 
and of the dimensionless contact pressure necessary for the calculation using the formula 

W) = cos2m9,q, (5.2) 
where Tb,(t) are Chebyshev polynomials. 

On the right-hand side of Table 1 we show the results of a calculation of Plffrom formula (4.10), 
obtained by the “large h” method [l, Table 71 and the “small h” method [l, Table 111 (the corresponding 
columns in the table are denoted by h 2 2 and h s 2) and obtained from the second formula of (3.5) 
(i.e. assuming that the additional term g(u) in formula (1.3) can be neglected). 

This research was supported financially by the Russian Foundation for Basic Research (02-01-00346). 
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